crystallized; pmr: δ 0.70, 0.80, 1.22, and 1.53 (4s, 3H each, quat. Me), 5.48 (m, 1H, C.7-H), 7.40 and 7.95 (2m, 5H, arom.), m/z 244 (M⁻⁺-BzOH, 100%), 229, 159, 120, 109, 108, 105. Dihydroeperuyl benzoate was prepared in the usual manner using Pd/C as catalyst; pmr: δ 0.70, 0.76, 0.95, and 1.53 (4s, 3H each, quat. Me), m/z 246 (M⁻⁺-BzOH, 100%), 245, 244, 231, 229, 123, 108, 105.

PODOCARP-8 (14)-EN-13-ONE (**10**).—Racemic **9** (10.8 g) was ozonized, cyclized, and dehydrated, following the procedures of reference (9), to yield the racemic enone **10** (5.8 g), mp 86-7° [Lit. (9) 89-90°], ν max (KBr) 1660, 1640, 880, cm⁻¹.

(±) DIHYDROEPERUOL (**8**).—To racemic **10** (1.75 g) dissolved in methanol (50 ml) was added 5% Pd/C (150 mg); the mixture shaken (4 h) under 40 psi H₂. The reaction mixture was filtered and the solvent removed to give a crystalline mass (1.72 g).

Part of the crude (500 mg) was dissolved in dry ether (6 ml), cooled in dry ice-acetone, and treated with 1.1 M MeLi solution (2 ml) for 1.5 h. The reaction complex was then hydrolyzed with aqueous NH₄Cl and extracted with ether three times. The pooled extracts were dried over Na₂SO₄, and the solvent was evaporated to give a white solid (400 mg). Chromatography over silica-gel, using hexane with increasing amounts of ether as eluent, allowed us to separate the racemic epimers. (\pm) Dihydroeperuol (112 mg) was further purified by fractional sublimation to give white crystals, mp 91-4°. *Anal.* calcd for C₁₈H₃₂O: C, 81.75; H, 12.20; O, 6.05. Found: C, 81.90; H, 12.0; O, 6.05; m/z 264 (M^{++}), 249 (M^{++} -15); 246 (M^{++} -18), 123, 108 (100%).

ACKNOWLEDGMENTS

This paper is a contribution of the Amazonas project of I.V.I.C. Partial financial support of CON-ICIT (Venezuela), the Organization of American States (OAS), and UNEP-UNESCO is hereby acknowledged.

LITERATURE CITED

- 1. V.De Santis and J.D. Medina, J. Nat. Prod., 44 (33), 370 (1981).
- 2. J.D. Medina and V.De Santis, *Planta Med.*, **43** (2), 202 (1981).
- 3. V.De Santis and J.D. Medina, unpublished results.
- 4. J.D. Cocker, T.G. Halsall, and A. Bowers, J. Chem. Soc., 4262 (1956).
- 5. C.R. Enzel and R. Ryhage, Arkiv. für Kemi, 33 (23) 267 (1965).
- 6. H.H. Zeiss and F.W. Grant, J. Am. Chem. Soc. 79, 1201 (1957).
- 7. D.Do Khac Manh, M. Fétizon, and J.P. Flament, Tetrahedron, 31, 1897 (1975).
- 8. G. Hugel, A.C. Oehlschlager, and G. Ourisson, Tetrahedron. Suppl. 8 (I), 203 (1967).
- 9. C.W.L. Bevan, D.E.U. Ekong, and J.I. Okogun, J. Chem. Soc., 1067 (1968).

Received 30 April 1982

ERRATUM

Due to an oversight, the structures for the article "The Alkaloids of *Corydalis meifolia*" by D.S. Bhakuni and Rekha Chaturvedi [*J. Nat. Prod.*, **46**, 320 (1983)] were not printed. Therefore, this article has been reprinted in its entirety and appears on pages 466-470 of this issue.